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Multiple Comparison among Groups of

Growth Curves

by Toshinari Kamakura' and Tsuyoshi Takizawa’

The problem of comparing a sequence of independent experiments divided into several groups with a control is discussed
under the logistic growth-curve models. We propose a method for constructing multiple testing procedures using the closed
testing procedures and the random-effect model for summarizing estimated values of parameters.

Introduction

In toxicological studies it is of great importance to evaluate side
effects or toxicity of new drugs, industrial compounds, and en-
vironmental contaminants. We are interested in investigating the
maximurm dose levels below which no toxicity is observed or, if
a maximum level exists, if it is tolerable. We call this level the
maximum neneffective dose (MNEDY). Ruberg (/) considers the
problems of inference about the minimum effective dose (MED})
by comparing various dose groups with a control and reaches the
conclusion that the simulation studies have superior contrast pro-
cedures compared to the other multiple comparison procedures
(2,3). If we design an experiment in which differences in doses
among groups are small, MNED and MED are almost the same.
In this article we focus on inferring the MNED from the view-
point of a safe dose.

In the usual dose-response studies we can use the standard
muitiple comparison techniques as described above, However,
itis difficult to apply them in cases where the responses are con-
tinually observed with constant exposure to some dose level and
when the observations are arranged on the time axis for each ex-
periment. The problem is how we can sclect the time point at
which to compare the two groups. Even if we select one point for
comparison, we may lose other information such that the obser-
vations of one group are always fewer than those of the other
groups. This situation is illustrated in the Figure 1. We are in-
terested in comparing groups in which each animal 1s observed
continually, and we propose a multiple comparison technique for
these types of data sets.

Growth-Curve Modeling and
Maximum Noneffective Dose
Suppose we have the following data sets:
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The subscripts i, j, and k mean, respectively, the ith group, jth
individual in each group, and kth observation for the each in-
dividual on the time axis. For example, x;; is the weight of the
Jth animal at time k in the ith group. We assume zero dose for i
= () as a control group and that dose level increases monotonous-
ly with index i.

Our main purpose is to compare the weight curves observed
on the time axis for each animal in the (@ + 1) groups. We would
like to know whether there are any differences in weight curves
among dose groups. Can we draw the line that discriminates the
dose level below which we may conclude no effects or no
obstructions in growths and compare it to the control group? This
question drives us to investigate the maximum noneffective dose
statistically. Yoshimura (4) considers this problem with no time-
dependent observations from the viewpoint of the standard multi-
ple comparisons. However, we cannot extend those multiple
comparison techniques to the problem of weight curves. First we
will fit some growth curve model with a few parameters and sec-
ond we will compare the derived estimates of these parameters.

We assume the logistic growth curves as weight curves for
animals, which is described as follows:
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Here ¢ is independently normally distributed with mean 0 and
variance ¢°. Note that the indexes / and k are omitted for
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simplicity. The parameter K is interpreted as the final weight of
an animal with constant exposure to a dose of some level. So the
estimate of X is one of our primary interests. We first compute
the estimates by maximizing the likelihood,

L= H
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for each individual. In fact. we must solve the n(a + 1) likelihood
equations. Then we would obtain 4n{a + 1) parameter estimates,
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and their asymptotic variances. In the following section we pro-
pose a method to summarize these estimates for multiple
comparisons.

Multiple Comparisons by Random-
Effects Model

It is useful to use a random-effect model for summarizing
estimated variables for each group. Korn and Whittemore (5) use
the random-effect model for obtaining overall estimates assum-
ing a multiple logistic model for each patient.

We assume that K is normally distributed with mean K, and
variance ¢ and that K;; and » are obtained by solving the
following likelihood equations:
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In these equatlons we can use the asymptotic variances of Kj,

o, as the variances a,j The asymptotic variances and

covariances of K; and 7 57 are calculated as follows:
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Now we would like to obtain the MNED level by multiply
comparing the estimates [K;i = 0, ..., a]. First we consider
the problem of the hypothesis testing where the null hypothesis is

Hy: K=K,=---=K, .

We define that
v = (Ko, K1, -, Ka).
Then the null hypothesis is expressed as follows:
Hy : Cr=o,

where the matrix C [a¢ X (g + 1)] is as follows:

1 -1 0 0

1 0 -1 0
C= .

1 0 0 -1

We consider the following test statistic.
= (C#) {CD(#)C'} " (CF) 6)

The operator D is used to generate the covariance matrix of the
vector argument. In our case the covariance matrix is a simple,
diagonal matrix whose elements correspond to the asymptotic
variances. Under the null hypothesis, the statistic given by Equa-
tion 6 has asymptotically a chi-square distribution with g degrees
of freedom. For multiple comparison we can use the closed-
testing procedures proposed by Marcus et al. (6), which require
that sets of hypotheses are closed under intersection and that each
test is of level a. Then we can assure that the overall error rate
is less than ¢ if we use these multiple comparison procedures.

We consider the following set of hierarchical hypotheses
closed under intersection;

H1: I(():I(I
Hg: I{0=K1=I(2

Ha: I{QZI{121{2="'2K4

The closed procedures are constructed by testing each null
hypothesis with a level o and finding the hypothesis Hyo; Hy for
\ < W is not rejected and H, for A > A is rejected with a level
a. Here we can use the test statistic (Eq. 5) for each test,

Examples

We consider two examples in which a new drug is tested for
toxicity. The first data are male body weights (grams) for a con-
trol and a dose group (200 mg/kg) from a 5-week toxicity study
in rats. The summary statistics are shown in Table 1.

What troubles toxicologists is that the control versus dose
group comparison shows significant difference at days 4-32 and
but is not significant at day 35 by the t-test. Should they conclude
significance or nonsignificance? We estimate the final body
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Table 1. Summary of statistics of control and dose groups.

Day
Group 0 4 7 11 14 18 21 25 28 32 35
Control Mean 121.1 158.4 186.0 218.6 241.1 273.6 293.4 320.8 3348 355.7 361.4
n=9 SE 1.3 2.4 2.5 3.6 4.2 5.2 6.2 7.0 7.5 88 9.7
Dose Mean 122.4 152.4 173.4 203.0 2255 255.0 275.9 297.4 309.0 330.4 337.8
(n=10) SE 1.5 1.6 2.0 2.3 3.3 3.6 4.2 5.3 5.2 6.4 6.6

weights K" in the random-effects model. The mean X is
402.20 g for the control and 382.72 g for the dose group. The
test statistic of Equation 6 with @ = 1 results in 1.53, and
therefore we can conclude that the two groups are not signifi-
cantly different from the viewpoint of the final estimated body
weights compared to the upper probability of chi-squared
distribution with 1 degree of freedom.

Second, we choose for illustration the data set consisting of a
control group and four dose groups: for each group, weights of
16 rats were taken at 27 time points. Dose groups levelsare 15,
35, 85, and 200 mg/kg. Figure 2 shows the plots of growth of
16 rats in 15 mg/kg dose group.

The estimate of the final body weight and its asymptotic
variance in each group are given in Table 2. Table 3 shows the
values of statistics obtained from Equation 6. From the table, we
can find that the dose group of 200 mg/kg is significantly dif-
ferent from the control group in the final body weight.

Sometimes laboratory workers make an error in administer-
ing drugs to rats and hurt the rats’ throats. Subsequently the rats

Table 2. Estimated final weights (grams) and their asymptotic variances.

Group number K- AVar (K-)
0 547.849 72.907
i 557.207 95282
2 556.211 181.048
3 530.379 119.401
4 459.725 136.771
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FiGURe2. Superimposed individual plots for the 15 mg/kg dose group.

Table 3. The values of chi-square statistics.

Hypothesis X
1 0.5206
2 0.6040
3 3.8614
4 51.4473

will not eat food, and they lose weight. If we come across this
kind of suspicious data, we can remove the observations that are
verified as abnormal by laboratory workers and continue to
analyze the remaining data set. For example, in our data seta
male rate of the 200 mg/kg dose group had an abnormally large
weight loss at day 91. If we delete this observation at this point,
we can obtain the slightly smaller chi-square value of 50.769 in
comparison with 51.447, which is given in the last row in Table
3. In this example we can conclude that the dose group of 85
mg/kg is the MNED with regard to the final body weights.

Conclusion and Discussion

We discussed the multiple comparison problems of parameter
estimates assuming logistic growth-curve models jointly using
a random-effect model and the closed procedure. It is important
to build a model that includes only a few parameters to avoid the
difficulty of handling multiplicity of the observation time points:
It is similar to the problem for detecting a trend. We assumed
normalities for using the random-effects model in this paper, but
it is better to check the normalities of parameter estimates. This
ray result in devising a new technique for data analysis using
random-effects models.

Some researchers might oppose using this approach to finding
MNED or MED by multiple testing procedures. Suppose that
no effects are observed within some dose level in mechanism A
but that a small effect is observed within this dose level in
rnechanism B. As for mechanism B, we sometimes consider the
effect not important compared to curing a disease with that drug.
In addition, if we have a large enough data set, we can detect the
very small effects. Statistically speaking, we do not distinguish
between mechanism A and B if we do not find any significance.
Therefore, we must note that the derived MNED is a statistical
result and that it strongly depends on the sample size. Further
research would be needed to find the MNED.

REFERENCES

1. Ruberg, 8. J. Contrasts for inentifying the minimum effective dose. J. Am.
Stat. Assoc. 84: B16-822 (1989).

2. Dunneit, C. W. A multiple comparison procedure fo. comparing several
treatments with a control. 1. Am. Stat. Assoc. 50: 1096-1121 (1955).



42 KAMAKURA AND TAKIZAWA
3. Williams, D. A. A test for differences between treatment means when 5. Korn, E., and Whittemore, A. 5. Method for analyzing panel studies of
several dose levels are compared with a zero dose control, Biometrics 28: acute health effects of air pollution. Biometrics 35: 795-802 (1979).
519-531 (1971). 6. Marcus, R., Peritz, E., and Gabriel, K. R. On closed testing procedures
4. Yoshimura, I. A study on the multiple comparisons of dose groups. In: with special reference to ordered analysis of variance. Biometrika 63:
Report of the Annual Meeting of the Japan Applied Statistical Society, 1987, 655-660 (1976).

pp- 47-48,



